- Home
- /
- TIL
- /
- Deep Learning
Softmax Function
Table of Contents
Softmax Function
$ \sigma(\mathbf{x}) = \dfrac{e^{x_i}}{\sum_{j=1}^{K} e^{\mathbf{x}_i}} $
where $ \sigma: \mathbb{R}^K \to (0, 1)^K $, $ K > 1 $, a vector $ \mathbf{x} = (x_1, …, x_K) \in \mathbb{R}^K $.
The softmax function is used as the activation function in the last layer of a neural network.
The terms “softargmax” and “normalized exponential function” are synonyms for the “softmax function”.
The softmax function is a smooth approximation of one-hot arg max of the sigmoid function.